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three atoms and two bonds. In Figure 3.2 these parts are distributed over three tables that also 
contain data for other molecules, e.g. water.  

 

 

 

 

 

 

Figure 3.1 CO2 and its graphical representation. 

 
   Atom      
   id mol_id element      

Molecule  1 1 C  Bond 
id name  2 1 O  id atom1 atom2 type 
1 CO2  3 1 O  1 1 2 double
2 H2O  4 2 H  2 1 3 double

    5 2 H  3 4 6 single 
    6 2 O  4 5 6 single 
            
 

Figure 3.2 Relational representation of CO2 and H2O. 

3.2 Multi-Relational Data Models 
An important piece of information in Multi-Relational Data Mining is the data model of the 
database [61]. It contains a description of the structure of the database in terms of the tables and 
relationships between them. It provides a list of schemata of the tables: specifications of the 
available attributes (e.g. numeric, nominal). Furthermore, it provides information about associations 
between tables: specifications of how records in one table relate to records in another table. 
Associations can be seen as slight generalisations of the foreign key notion. They specify that two 
tables are related, and determine a number of details concerning the relationship, but do not fix the 
actual implementation of this. In practice however, an association in a relational database will 
always appear as a primary key-foreign key pair along with the necessary referential integrity 
constraint. 
Associations are a bit more specific than foreign key constraints. They determine in greater detail 
the cardinality of the relationship between two tables, something which we will refer to as the 
multiplicity of the association. For example, we may specify that any record in one table relates to 
multiple, but at least one, records in another table. Such information may be very valuable to guide 
the Data Mining process but of less use to the integrity of the database, hence the difference 
between associations and foreign key constraints. Associations provide multiplicities in two 
directions, one for each table involved. Typically, we will be using the following four values per 
multiplicity:  
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• Zero or one (0..1) 
• One (1) 
• Zero or more (0..n) 
• One or more (1..n) 

As was proposed in [61], a visual modelling language for specifying the data model will be used, 
namely the Class Diagrams that are part of the Unified Modeling Language (UML) [92, 94]. This 
language was developed for modelling databases (as well as object oriented systems) and contains a 
subset of visual elements that exactly fit our needs. Figure 3.3 shows a UML Class Diagram for our 
molecular example. 
As can be seen, there are three classes: molecule, atom and bond. Four associations between these 
classes determine how objects in each class relate to objects in another class. As a bond involves 2 
atoms (in different roles) there are two associations between atom and bond. The multiplicity of an 
association determines how many objects in one class correspond to a single object in another class. 
For example, a molecule has one or more atoms, but an atom belongs to exactly one molecule. 

 
Figure 3.3 UML Class Diagram of a molecular database. 

Why do we wish to use UML to express bias? First of all, as UML is an intuitive visual language, 
essentially consisting of annotated graphs, it is easy to write down the declarative bias for a 
particular domain or judge the complexity of a given data model. Another reason for using UML is 
its widespread use in database modelling. UML has effectively become a standard with thorough 
support in many commercial tools. Some tools allow the reverse engineering of a data model from a 
given relational database, directly using the table specifications and foreign key relations. 
As attractive a visual language may be for database analysts or designers, it is less practical for 
machine interpretation. We have therefore defined a textual version of the necessary elements of 
UML Class Diagrams, in the form of an XML dialect called Multi-Relational Modelling Language 
(MRML) [64]. This XML format not only has applications in MRDM, but also in other database 
related tools such as OLAP, datawarehousing and automatic generation of (web-)applications on 
top of relational databases. Furthermore, due to the graphical nature of the data model, other 
Structured Data Mining tools can also be made to accept MRML as input. [61] demonstrates this for 
the ILP system Tilde. MRML contains a number of obvious elements such as tables, attributes and 
associations. A detailed description of the MRML format, including DTD is given in Appendix A. 
The following is an excerpt of the molecular database in MRML. 
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records in the corresponding table n.t that is determined by the set of conditions n.C and the 

relationship with records in other tables characterised by selection edges connected to n. Selection 

graphs are more intuitive than expressions in SQL or Prolog, because they reflect the structure of 

the data model, and refinements to existing graphs may be defined in terms of additions of edges 

and nodes. 

A selection graph can be translated into SQL or Prolog in a straightforward manner. The following 

algorithm shows the translation into SQL. It will produce a list of tables table_list, a list of join 

conditions join_list, and a list of conditions condition_list, and combine these to produce a SQL-

statement. A similar translation to Prolog can be made.  

 

 TranslateSelectionGraph(selection graph G) 

 

table_list = '' 

condition_list = '' 

join_list = '' 

for each node i in G.N do  
 table_list.add(i.table_name + ' T' + i) 
 for each condition c in i do 

  condition_list.add('T' + i + '.' + c) 

for each edge e in G.E do 

join_list.add(e.left_node + '.' + e.left_attribute + ' = ' +  

  e.right_node + '.' + e.right_attribute) 

return 'SELECT DISTINCT T0. ' + t0.primary_key + 
  ' FROM ' + table_list + ' WHERE ' + join_list + ' AND ' + condition_list 

 

Example 4.1 The following selection graph, and its corresponding SQL statement, represents the 

set of molecules that have a bond, and a C-atom. 

 

 

 

 

 

 

 

 

 

 

 SELECT DISTINCT T0.id 
 FROM molecule T0, bond T1, atom T2 
 WHERE T0.id = T1.molecule_id and T0.id = T2.molecule_id 
 AND T2.element = 'C' 

4.2.1 Refinements 

The selection graph language provides a search space of multi-relational patterns for MRDM 

algorithms to explore. The MRDM algorithms in this thesis all traverse this search space in a top-

down fashion: starting with a simple, very general pattern, progressively consider more complex 

and specific selection graphs. A refinement operator defines in more detail how this top-down 

traversal works. 
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three atoms and two bonds. In Figure 3.2 these parts are distributed over three tables that also 
contain data for other molecules, e.g. water.  
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Figure 3.2 Relational representation of CO2 and H2O. 

3.2 Multi-Relational Data Models 
An important piece of information in Multi-Relational Data Mining is the data model of the 
database [61]. It contains a description of the structure of the database in terms of the tables and 
relationships between them. It provides a list of schemata of the tables: specifications of the 
available attributes (e.g. numeric, nominal). Furthermore, it provides information about associations 
between tables: specifications of how records in one table relate to records in another table. 
Associations can be seen as slight generalisations of the foreign key notion. They specify that two 
tables are related, and determine a number of details concerning the relationship, but do not fix the 
actual implementation of this. In practice however, an association in a relational database will 
always appear as a primary key-foreign key pair along with the necessary referential integrity 
constraint. 
Associations are a bit more specific than foreign key constraints. They determine in greater detail 
the cardinality of the relationship between two tables, something which we will refer to as the 
multiplicity of the association. For example, we may specify that any record in one table relates to 
multiple, but at least one, records in another table. Such information may be very valuable to guide 
the Data Mining process but of less use to the integrity of the database, hence the difference 
between associations and foreign key constraints. Associations provide multiplicities in two 
directions, one for each table involved. Typically, we will be using the following four values per 
multiplicity:  
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records in the corresponding table n.t that is determined by the set of conditions n.C and the 

relationship with records in other tables characterised by selection edges connected to n. Selection 

graphs are more intuitive than expressions in SQL or Prolog, because they reflect the structure of 

the data model, and refinements to existing graphs may be defined in terms of additions of edges 

and nodes. 

A selection graph can be translated into SQL or Prolog in a straightforward manner. The following 

algorithm shows the translation into SQL. It will produce a list of tables table_list, a list of join 

conditions join_list, and a list of conditions condition_list, and combine these to produce a SQL-

statement. A similar translation to Prolog can be made.  

 

 TranslateSelectionGraph(selection graph G) 

 

table_list = '' 

condition_list = '' 

join_list = '' 

for each node i in G.N do  
 table_list.add(i.table_name + ' T' + i) 
 for each condition c in i do 

  condition_list.add('T' + i + '.' + c) 

for each edge e in G.E do 

join_list.add(e.left_node + '.' + e.left_attribute + ' = ' +  

  e.right_node + '.' + e.right_attribute) 

return 'SELECT DISTINCT T0. ' + t0.primary_key + 
  ' FROM ' + table_list + ' WHERE ' + join_list + ' AND ' + condition_list 

 

Example 4.1 The following selection graph, and its corresponding SQL statement, represents the 

set of molecules that have a bond, and a C-atom. 

 

 

 

 

 

 

 

 

 

 

 SELECT DISTINCT T0.id 
 FROM molecule T0, bond T1, atom T2 
 WHERE T0.id = T1.molecule_id and T0.id = T2.molecule_id 
 AND T2.element = 'C' 

4.2.1 Refinements 

The selection graph language provides a search space of multi-relational patterns for MRDM 

algorithms to explore. The MRDM algorithms in this thesis all traverse this search space in a top-

down fashion: starting with a simple, very general pattern, progressively consider more complex 

and specific selection graphs. A refinement operator defines in more detail how this top-down 

traversal works. 
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records in the corresponding table n.t that is determined by the set of conditions n.C and the 

relationship with records in other tables characterised by selection edges connected to n. Selection 

graphs are more intuitive than expressions in SQL or Prolog, because they reflect the structure of 

the data model, and refinements to existing graphs may be defined in terms of additions of edges 

and nodes. 

A selection graph can be translated into SQL or Prolog in a straightforward manner. The following 

algorithm shows the translation into SQL. It will produce a list of tables table_list, a list of join 

conditions join_list, and a list of conditions condition_list, and combine these to produce a SQL-

statement. A similar translation to Prolog can be made.  

 

 TranslateSelectionGraph(selection graph G) 

 

table_list = '' 

condition_list = '' 

join_list = '' 

for each node i in G.N do  
 table_list.add(i.table_name + ' T' + i) 
 for each condition c in i do 

  condition_list.add('T' + i + '.' + c) 

for each edge e in G.E do 

join_list.add(e.left_node + '.' + e.left_attribute + ' = ' +  

  e.right_node + '.' + e.right_attribute) 

return 'SELECT DISTINCT T0. ' + t0.primary_key + 
  ' FROM ' + table_list + ' WHERE ' + join_list + ' AND ' + condition_list 

 

Example 4.1 The following selection graph, and its corresponding SQL statement, represents the 

set of molecules that have a bond, and a C-atom. 

 

 

 

 

 

 

 

 

 

 

 SELECT DISTINCT T0.id 
 FROM molecule T0, bond T1, atom T2 
 WHERE T0.id = T1.molecule_id and T0.id = T2.molecule_id 
 AND T2.element = 'C' 

4.2.1 Refinements 

The selection graph language provides a search space of multi-relational patterns for MRDM 

algorithms to explore. The MRDM algorithms in this thesis all traverse this search space in a top-

down fashion: starting with a simple, very general pattern, progressively consider more complex 

and specific selection graphs. A refinement operator defines in more detail how this top-down 

traversal works. 
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Figure 3.4 The Financial database. 

It should be noted that intensional tables (views) do not necessarily belong to the background. 
Although the definition of these tables is often based on common, static knowledge about the world, 
the actual data represented by the intensional table can just as well be foreground. This is because it 
can be derived from the dynamic data in foreground tables, and can be considered a reformulation 
of this data. 
Note also that alternative definitions of the background (and hence the foreground) have been used, 
particularly in the ILP field. The following uses have appeared in the literature: 

• The background consists of every table (extensional or intensional) other than the target 
table. 

• The background consists of every table that is not individual-specific (foreground equals 
individual-data). In the learning from interpretations setting this coincides with our own 
definition. 

• The background consists of all intensionally defined tables (i.e. views or predicate 
definitions). 

3.3.2 Directions 

In general Multi-Relational Data Mining algorithms will traverse the graph of tables and 
associations, which makes the data model a strong way of guiding the search process. In many cases 
however, the data model is too general and not all paths are desirable. Data models may contain 
redundant associations that are useful for describing structural information in alternative ways, but 
harm the search process if the redundancy is not made explicit. 
 
Example 3.2 Consider the molecular database in Figure 3.3. The data model provides two ways of 
expressing which molecule a bond belongs to: directly through the association between molecule 
and bond, and via the two atoms it binds. Although none of the bonds in the database will be 
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Figure 5.4 Two rules covering 183 and 175 loans (35 and 34 bad) respectively. 

Thus far the rules discovered have been treated as an independent rule set, with the disadvantage of 

having many similar rules. Instead, we can consider the value of individual rules in the context of 

the remaining rules in the rule set. A good way to do this is by means of an ROC analysis (Receiver 

Operating Characteristics) [35, 39, 86]. Each rule will effectively be treated as a classifier, and its 

performance plotted in the two-dimensional space defined by its true positive rate (corresponds to 

the sensitivity of the rule) and the false positive rate (1–specificity). The ROC analysis assumes that 

different classifiers may be optimal under different circumstances, depending on the 

misclassification cost (which may not be specified at the time of analysis). By considering the ROC 

plot, and the classifiers that are optimal for each potential specification of the misclassification cost, 

we can filter our rule set, and discard rules that can never be optimal. As classifiers on a straight 

line (known as iso-performance lines) have the same cost, the convex hull of the set of points in the 

ROC plot can be used to find the optimal rules. The convex hull includes the points (0, 0) and (1, 

1), for the rules → false and → true, respectively.  

Figure 5.5 shows the resulting ROC plot for one of the experiments (target ok, optimised for 

novelty) mentioned above. The diagonal line represents the minimum coverage of 25%. Clearly, 

only a fraction of the rules lie on the convex hull, even when considering the duplicate subgroups 

present. Novelty is a good score function in relation to ROC analysis, as it scores rules on the basis 

of equal costs. Rules with the same novelty appear on iso-performance lines of slope 1, and better 
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Furthermore, we show that we attain good results as a result of
the specific characteristics of our enhanced pattern language. We
show that simpler pattern sets lead to worse results and that target
table based approaches are much less effective. We conclude by
discussing the readability of our models, and their related work.

2. DATA AND PATTERNS
In this section we formally define the data type, relational pat-

terns, how such patterns occur in the database, and how to calculate
the support of a pattern.

2.1 Data
We assume that the data resides in a multi-relational database

in which the relations between the tuples in the various tables is
coded, as usual, via foreign keys. We assume that any pair of two ta-
bles have at most one foreign key relationship between them. This
is without loss of generality as databases can always be losslessly
recoded such that this assumption holds. Moreover, we assume that
all attributes of all tables have a categorical domain. To introduce
our notation, we give a brief formal description.

The database db consists of a set of tables, db = {T 1, . . . , T n},
and we assume that all the table names (the T i) are unique. Each
table T has a schema S(T ). This schema consists of a key, 0 or
more foreign keys, and 1 or more attributes, i.e,

S(T i

) = (Ki,F i,Ai

)

in which:

• Ki is the key. Without loss of generality, we assume that the
key name is unique. Its domain, D(Ki

), is a set of integers.

• F i is a set of 0 or more foreign keys. We assume that the
database schema is consistent, that is

– For each foreign key F i

j

of T i, there is a table, say,
T l 2 db for which it is the key, i.e., F i

j

= Kl. As noted
above, we assume that there is at most one foreign key
in T i that refers to Kl

– The domain of F i

j

is the domain of that Kl.

• Ai consists of 1 or more attributes. Each attribute Ai

k

has a
categorical domain D(Ai

k

).

• Summing up, the domain of table T i denoted by D(T i

) is
the cartesian product of all domains involved, i.e.,

D(T i

) = D(Ki

)£
Y

F

i
j2Fi

D(F i

j

)£
Y

A

i
k2A

i

D(Ai

k

)

In our example database, shown bottom-right in Figure 1, the
DISPOSITION table has as key: disp

ID

(depicted in bold) and as
foreign key account

ID

. Moreover, it has an attribute Type whose
domain is: {Owner, Disponent}.

Next to a schema, each table has an extend, consisting of a set
of tuples. As usual, we blur the distinction between the table and
its extend and say that a tuple t is in table T i; denoted by t 2 T i.
The database as whole should satisfy referential integrity. That is,
foreign-key values in a tuple refer to existing tuples in the table for
which this foreign key is the key. More formally we have:

A tuple for table T i with S(T i

) = (Ki,F i,Ai

) is given by:
t = (Ki

= k, {F i

j

= k
j

}, {Ai

l

= v
l

})
in which:

10 06/20072

11 03/20063

12 08/20063

13 03/20062

14 05/20081

06/2008

09/2008

08/2006

09/2006

05/2008

06/2008

09/2008

20 10 141 1000 UVER

NULL

ST

21 10 359 2000 SIPO

SIPO

SIPO

QR

22 11 850

850

1000YZ

23 283

24

13 1000ST

2000OP13

30 10 10245 12 A

31 10 13722 24 B

32 11 27313 36 B

33 12 27147 12 B

34 12 27194 36 D

35

18203 12 C36

13

13

30289 12 B

40 10 OWNER

OWNER

OWNER

DISPONENT

DISPONENT

41 11

42 11

43 12

44 12

Frequency

T1 = ACCOUNT

DateaccountID

T4 = DISPOSITION

accountID TypedispID

Date

T2 = LOAN

accountID Amount Duration PaymentloanID

k kj v1 v2

Ai
1 Ai

2

Ti

Fi
j Ki

Bank-To

T3 = ORDER

accountID Amount-To Amount TypeordernID

Figure 1: An illustrative relational database: an excerpt from
the Financial database.

• k 2 D(Ki

),

• the tuple has one entry for each F i

j

2 F i and one entry for
each Ai

j

2 Ai.

• let K
l

be the key to which F i

j

refers, then k
j

2 D(Kl

),

• for referential integrity on the database db, we have that for
any tuple t 2 T i, there is a tuple t0 2 T l such that º

F

i
l
(t) =

º
K

l(t0).

• v
l

2 D(Ai

l

).

Again as usual, we will suppress the labels in tuples whenever pos-
sible. That is, we simply write (40, 10, Owner) 2 DISPOSITION

for a tuple in our example database in Figure 1.

2.2 Patterns
The prototypical example of patterns are item sets. In the case

of a (single) table of categorical data, an item set generalises to a
selection. Clearly such patterns should be included into our pattern
language. However, “true” relational patterns should cross multiple
tables. That is, they should describe related selections over multiple
tables.

After formally introducing our pattern definition, we will illus-
trate it with an example.

DEFINITION 1 (PATTERN). Let db = {T 1, . . . , T n} be a data-
base for which each table T i has schema S(T i

) = (Ki,F i,Ai

).

• Let {A1, . . . , A
l

} µ Ai and let v
j

2 D(A
j

), then the ex-
pression p defined as

p = T i

({A1 = v1, . . . , A
l

= v
l

})
is a pattern for T i; this is denoted by p 2 Pi.

• Let T i have key Ki, moreover, let Ki be a foreign key of T j;
that is, there is an F j

l

2 Fj such that F j

l

= Ki. Let p0 2 Pi

and let {p1, . . . p
k

} µ Pj . The expression p defined as

p = p0[p1, . . . , p
k

]

is a pattern for T i, i.e., p 2 Pi.

• Let T i have key Ki, moreover, let Ki be a foreign key of the
q tables T j1 , . . . , T jq , such that if r 6= s, then T jr 6= T js .
Let p0 2 Pi and for l 2 {1, . . . , q}, let {pl

1, . . . p
l

kl
} µ Pjl .

The expression p defined as

p = p0[[p
1
1, . . . , p

1
k1 ], . . . , [p

q

1, . . . p
q

kq
]]

is a pattern for T i, i.e., p 2 Pi.
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10 06/20072

11 03/20063

12 08/20063

13 03/20062

14 05/20081

15 03/20063

16 06/2007

06/2008

09/2008

08/2006

09/2006

05/2008

06/2008

09/20082

20 10 141 1000 UVER

NULL

ST

21 10 359 2000 SIPO

SIPO

SIPO

QR

22 11 850

850

1000YZ

23 283

24

13 1000ST

2000OP13

30 10 10245 12 A

31 10 13722 24 B

32 11 27313 36 B

33 12 27147 12 B

34 12 27194 36 D

35

18203 12 C36

13

13

30289 12 B

40 10 OWNER

OWNER

OWNER

DISPONENT

DISPONENT

41 11

42 11

43 12

44 12

Frequency

T1 = ACCOUNT

Date

R
EO

R
D

ER
D

B

accountID

T4 = DISPOSITION

accountID TypedispID

Date

T2 = LOAN

frequency(P1) = 2, count(P1) = 10, size(P1) = 9

P1 : ACCOUNT({ Frequency = 2 }) 
 [ [  ORDER({ Bank-To=ST, Amount=1000 }),  
       ORDER({ Amount=2000, Type=SIPO }) ] ,
 [ [  LOAN({ Date=’06/2008’, Duration=12 }), 
       LOAN({ Date=’09/2008’, Payment=B })  ] ]

P2 : ACCOUNT({ Frequency = 3 }) 
 [ [  DISPOSITION({ Type = Disponent }),  
       DISPOSITION({ Type = Owner }) ] ]

frequency(P2) = 2, count(P2) = 6, size(P2)=3

Partially Covered Database

accountID Amount Duration PaymentloanID

Bank-To

T3 = ORDER

accountID Amount-To Amount TypeordernID

3

3

OWNER

OWNER

DISPONENT

DISPONENT

06/200806/2008

09/2008

06/2008

09/200809/2008

06/200806/2008

09/2008

06/2008

09/200809/2008

12

12

B

B

2

ST

STST

1000

2000

1000

1000

2000

1000

2000

SIPOSIPO

SIPO

Figure 2: The database is partially covered with the two first
patterns of the code table using RDB-KRIMP. The uncoloured
part of the database is covered by alphabet patterns. Note that
for a lossless decoding we incorporate the database order (seen
at the swap of LOAN:loan-id=35 and 36).

is essential to encode the database in a lossless manner, as we will
show below.

Given this pattern definition, in order to derive the set of frequent
patterns P

µ

one can resort to existing relational mining algorithms
like FARMER [13] or attribute tree miners like FATminer [2]. Par-
tial frequent pattern sets generated by either approach can be com-
bined into P

µ

(see Algorithm 1).
Finally, we define a canonical order on our patterns. We assume

for each table T i, each attribute A
j

, and each attribute value v
k

a
unique (string) label. We denote by l(X) the unique label assigned
to X (X 2 {T i, A

j

, v
k

}). Canonical forms are simply strings,
hence we have the familiar lexicographic order, denote by <

lex

, on
them. Using this order, we define:

canonical(p = T i

({A1 = v1, . . . , Aj

= v
j

})) =

l(T i

) : {l(A1) : l(v1), . . . , l(Aj

) : l(v
j

)}

canonical(p0[[p
1
1, . . . , p

1
k1 ], . . . , [p

m

1 , . . . pm

km ]]) =

canonical(p0) :

m

i=1:
ki
j=1 canonical(pi

j

)

This allows us to define a canonical order on our patterns:
p0 <

can

p1 iff canonical(p0) <
lex

canonical(p1).

3. PROBLEM STATEMENT
Now we have defined our patterns and database, we can present

our problem formally. In order to find a good global model for our
relational database, we use the minimum description length (MDL)
[7] principle, which is a practical application of Kolmogorov Com-
plexity [11]. Given a set of models H, we want to find a model H
that minimises L(H) + L(D|H), in which

• L(H) is the length, in bits, of the description of H , and

• L(D|H) is the length, in bits, of the description of the data
D when encoded with H .

The data that is encoded by our model resides within a relational
database as defined in Section 2, or more specifically within its
attribute data. Similar to [10, 14] our models are code tables. Such

Algorithm 2 REORDERDB
REORDERDB (reorder, [t1, . . . , ti

])

1: if [t1, . . . , ti

] \ reorder µord reorder then
2: reorder = reorder [ [t1, . . . , ti

]

3: return true
4: else
5: return false
6: end if
A : [a1, . . . , an

] µord B : [b1, . . . , bm

]

1: if A = ? then
2: return true
3: else if B = ? then
4: return false
5: else if a1 = b1 then
6: return [a2, . . . , an

] µord

[b2, . . . , bm

]

7: else if a1 6= b1 then
8: return [a1, . . . , an

] µord

[b2, . . . , bm

]

9: end if

a code table CT is a two column table. On the left hand side reside
relational patterns as defined above, on the right hand side reside
the codes. The codes are taken from a prefix code C. For each code,
we calculate a Shannon entropy based length: more frequently used
codes obtain smaller lengths. Further, the number of patterns in the
code table is denoted by |CT |.

We encode the relational database using the patterns from a code
table CT . Figure 2 shows an example on how this encoding comes
about through a database cover. Here, we show two patterns that
(partially) cover the database. Using our pattern notation, we write
the first code table pattern as:

ACCOUNT({Frequency = 2})[
[ORDER({Bank-To = ST, Amount = 1000}),
ORDER({Amount = 2000, Type = SIPO})]
[LOAN({Date = 06/2008, Duration=12}),
LOAN({Date = 09/2008, Payment=B})]]

We cover the database by replacing the related attribute values
with the code of the pattern. As this pattern occurs at two yet un-
covered locations in the database (id=10 and 13), it is used to de-
scribe this part of the database. Note that in this figure each code
table element has its own distinct colour.

In order for the encoding to be lossless, we need to be able to
decode every part of the occurrence. As an occurrence may span
multiple tuples within the database, we need to write the code at
each tuple covered by this occurrence. Furthermore, as each pattern
has just one code the necessity of a database- and pattern order
becomes clear: we need to know which tuple is covered with which
pattern from the list.

We match the order of the tuples within the database with the
order of the pattern. In the first pattern (p1 in fig. (2)), LOAN :

{Date = 06/2008, Duration = 12} is ordered before LOAN :

{Date = 09/2008, Payment = B}. Note the swap of tuples
35 and 36 to align the database order with the order of the pattern.
Once covered, the complete database is encoded and looks like a
mosaic, which can be decoded using the database order, and the
code table (see fig. 2).

So, for unambiguous decoding, the order of the tuples in the
database has to be aligned with the order in the code table pat-
terns. Therefore, we allow a (partial) re-ordering of the tuples in
the database. However, a pair of tuples is only re-ordered once,

Koopman & 
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Table 1: Characteristics of the used databases. Shown are for
each table, the number of tuples (#t), the number of attributes
(#a), the number of keys (K and F ) (#k), and the average
number of joins a single tuple can make (join).

table #t #a #k join

FINANCIAL ACCOUNT 682 2 3 5.43
CLIENT 827 2 3 2
LOAN 682 5 2 6.70
CARD 36 2 3 1
DISP 827 1 4 1.04
ORDER 1513 3 3 1

GENES GENES1 862 4 1 6.86
GENES2 862 4 1 6.86
INT 910 2 3 1
META1 4151 4 2 1
META2 4151 4 2 1

HEPATITIS BIO 694 5 2 1
IFN 198 4 2 1
OLAB 31039 3 2 1
PATIENT 771 3 1 42.4

each pattern in a candidate set. A candidate pattern is only kept in
the code table if it improves the compression. The RDB-KRIMP
algorithm is shown in pseudo code in Algorithm 4.

RDB-KRIMP starts with a database db and a frequent pattern set
P

µ

as input. To ensure that the complete database can be covered
always, the code table is initialized with CT

init

(line 1), which
contains all alphabet elements (i.e. p = T i

(A
j

= v
j

)). One by
one, it takes a candidate pattern from P

µ

and tests whether it con-
tributes to improve compression (2-8). To do this, a new code table
CT

new

is constructed by adding the candidate pattern to the previ-
ous code table CT (3). Using this code table we compute a cover of
the database (4) and the compressed sizes of the old and new code
table are compared (5). If the addition of the new candidate pattern
improves compression, it is kept in the code table (6). Otherwise,
it is permanently discarded.

Note that we need to define two orders: the first on the candidate
pattern set P

µ

and the second on the patterns in the code table. For
P

µ

we define an order for all pattern pairs (p1, p2):

if support(p1) > support(p2)! p1 > p2

else if size(p1) > size(p2)! p1 > p2

else if p1 >
can

p2 ! p1 > p2

else p1 ∑ p2

For the code table, we define the following order on all pattern
pairs (p1, p2):

if size(p1) > size(p2)! p1 > p2

else if support(p1) > support(p2)! p1 > p2

else if p1 >
can

p2 ! p1 > p2

else p1 ∑ p2

We assume that both the frequent pattern sets and code tables are
always ordered in this fashion. Note that we are not after the actual
attained compression, but rather the patterns that contribute to it.
We use lossless compression as a means, not as a goal, to find a
good set of descriptive patterns.

0   5%10%15%20% 25%30%35%40%45%50%
70%

75%

80%

85%

90%

95%

70%

0   5%10%15%20%25%30%35%40%45%50%
0

100

200

300

400

500

Database Compression

Code Table Growth

Candidate Set Growth

0   5%10%15%20%25%30%35%40%45%50%
0

1

2

3

4

5

6

10

10

10

10

10

10

(a)

(b)

(c)

financial
genes
hepatitis

financial
genes
hepatitis

financial
genes
hepatitis

L
(d

b
, C

T
)

lo
g

 P
θ

C
T

minsup (θ) %

minsup (θ) %

minsup (θ) %

Figure 3: Results for different minimum support values µ: (a)
The encoded length obtained for the database, (b) the number
of frequent patterns, and (c) the number of code table patterns
in CT .

5. EXPERIMENTS
To experimentally validate our approach we run experiments on

publicly available relational data sets from previous KDD-cups (see
Table 1). These databases are: the financial 1, genes interaction 2,
and hepatitis 3 databases. We use a frequent attributed tree miner
[2] to generate the frequent pattern sets, as our relational patterns
can be represented as attributed trees.

5.1 Describing the Database
In order to find the optimal model of the database, RDB-KRIMP

would ideally evaluate all patterns. However, in order to be ef-
ficient, we evaluate all frequent patterns. To measure the effect
of the minimum support value, we generate a frequent candidate
set P

µ

for various µ. Given a P
µ

we compress the database using
RDB-KRIMP, which results in a code table CT and an encoded
database size L(CT, db).

The effect of sweeping the minimum support is shown in Figure
3a. For all used databases, we see that increasingly lower encoded
database sizes are obtained for lower minimum support values.

The smaller encoded database sizes relate to the larger available
sets of candidate patterns (see Figure 3b). In all cases we see that
this candidate set growth is exponential. These larger candidate
sets contain more patterns that can be inserted in the code table to
contribute to the database description.

While we see that P
µ

grows exponentially for lower values of µ,
we do not see this trend in the size of the code table (see Figures

1http://lisp.vse.cz/challenge/
2http://pages.cs.wisc.edu/ dpage/kddcup2001/
3http://lisp.vse.cz/challenge/

Koopman & 
Siebes (2009) 



Induc:ve	
  Logic	
  Programming	
  

Jefrey Lijffijt, Eirini Spyropoulou, Tijl De Bie 27 

Sept 11, 2015 



(Probabilistic) Inductive Logic Programming 
•  Field	
  of	
  research	
  

•  Also	
  related	
  to	
  /	
  equivalent	
  with	
  probabilis6c	
  logic	
  
learning,	
  sta6s6cal	
  rela6onal	
  learning,	
  logical	
  and	
  
rela6onal	
  learning	
  

•  Ultra	
  brief	
  review	
  
•  We	
  are	
  not	
  experts	
  
•  Too	
  much	
  to	
  cover	
  

Jefrey Lijffijt, Eirini Spyropoulou, Tijl De Bie 28 

Sept 11, 2015 



Data 
•  Logical	
  representa:on	
  

•  Also	
  an	
  E-­‐R	
  model	
  ?	
  

Jefrey Lijffijt, Eirini Spyropoulou, Tijl De Bie 29 

Sept 11, 2015 



Pattern syntax 
•  Generalises	
  all	
  paHern	
  mining	
  syntaxes	
  discussed	
  
here	
  

•  Can	
  derive	
  predicates	
  (rules)	
  
•  Can	
  have	
  no	
  antecedent	
  à	
  associa:on	
  but	
  not	
  ‘rule’	
  
•  Terms	
  can	
  be	
  variables	
  rather	
  than	
  constants	
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daughter(C, P) :− female(C), mother(P, C) 
[De Raedt & Kersting, 2008] 



Algorithmic approach 
•  Very	
  different	
  terminology	
  

•  Logic,	
  but	
  
•  Various	
  frameworks	
  (entailment,	
  interpreta:ons,	
  
proofs)	
  

•  Also	
  based	
  on	
  ‘generality’	
  (=	
  monotonicity)	
  

•  Search	
  can	
  easily	
  become	
  very	
  costly	
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Interestingness 
•  Objec:ve	
  interes:ngness	
  measures	
  have	
  been	
  
employed	
  
•  Frequency	
  
•  Confidence	
  
•  …	
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De Raedt (2008) 
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De Raedt (2007) 
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