Making Sense of (Multi-)Relational Data

Part II: Exploration through targeted patterns
Jefrey Lijffijt
Eirini Spyropoulou

Tijl De Bie

Approaches

- Safarii / "Multi-Relational Data Mining"
- RDB-Krimp
- Inductive Logic Programming

Safarii / "Multi-Relational Data Mining"

Data

- Relational database / E-R model

Atom		
id	mol_id	element
1	1	C
2	1	O
3	1	O
4	2	H
5	2	H
6	2	O

Knobbe (2004)
Bond

id	atom1	atom2	type
1	1	2	double
2	1	3	double
3	4	6	single
4	5	6	single

Figure 3.2 Relational representation of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.

Data

- Relational database / E-R model

Example pattern

- Pattern =
all molecules with
at least one bond and a C atom

Knobbe (2004)

Pattern syntax

- Individuals are records in the target table, along with its associations and associated parts
- The units which we want to predict/describe
- A subgroup is a set of individuals

Pattern syntax

- Pattern = subgroup = selection graphs

Pattern syntax

- Pattern = subgroup = selection graphs
- Mining is then refinement of selection graphs
- Conditioning: choose subset of values ($=, \geq, \leq$)
- Association: add an association

Pattern syntax

- Simple case: condition \& association refinement

Pattern syntax

Molecule

id	name
1	CO_{2}
2	$\mathrm{H}_{2} \mathrm{O}$

Knobbe (2004)

Atom		
id	mol id	element
1	1	C
2	1	O
3	1	O
4	2	H
5	2	H
6	2	O

Bond

id	atom1	atom2	type
1	1	2	double
2	1	3	double
3	4	6	single
4	5	6	single

Figure 3.2 Relational representation of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.

Implementation of MRDM: Safarii

- Relational association rule discovery
- Find refinements using aggregation
- Categorical: select an attribute-value
- Numerical: exists \leq, \geq, $\min \leq, \max \geq$
- These are SQL primaries, there are many more possibilities

Algorithmic approach

- Restrict \# associations, \# refinements
- Generate SQL queries, push workload to DB
- Aggregation is greedy
- Choose only optimal split at runtime
- Essentially a form of local discretisation

Algorithmic approach

Knobbe (2004)

- Patterns are also SQL queries


```
SELECT DISTINCT TO.id
FROM molecule T0, bond T1, atom T2
WHERE TO.id = T1.molecule_id and TO.id = T2.molecule_id
AND T2.element = 'C'
```


Interestingness

- Several objective interestingness measures
- support $(S \rightarrow T)=P(S T)$
- coverage $(S \rightarrow T)=P(S)$
- accuracy $(S \rightarrow T)=P(T \mid S)$
- $\operatorname{specificity~}(S \rightarrow T)=P(\neg S \mid \neg T)$
- sensitivity $(S \rightarrow T)=P(S \mid T)$
- novelty $(S \rightarrow T)=P(S T)-P(S) \cdot P(T)$

Interestingness

- Several objective interestingness measures
- Steer aggregation
- Rank rules

Predicting bad loans

Knobbe (2004)

RDB-Krimp

Data

- Relational database / E-R model
- Table defined as: key, foreign keys, attributes
- Categorical attributes only

Koopman \& Siebes (2009)

$\mathbf{T}^{\mathbf{i}}$					
$\mathbf{K}^{\mathbf{i}}$	F_{j}	$\mathrm{A}^{\mathrm{i}}{ }_{1}$	$\mathrm{~A}^{\mathrm{i}}{ }_{2}$		
k	k	k_{j}	V_{1}		

$\mathbf{T}^{\mathbf{2}}=$ LOAN						
loan ID	account	Date	Amount	Duration	Payment	
30	10	I $06 / 2008$	10245	12	A	
31	10	$09 / 2008$	13722	24	B	
32	11	$08 / 2006$	27313	36	B	
33	12	$09 / 2006$	27147	12	B	
34	12	$05 / 2008$	27194	36	D	
35	13	$09 / 2008$	30289	12	B	
36	13	$06 / 2008$	18203	12	C	

$\mathrm{T}^{3}=\mathbf{O R D E R}$										
ordern ${ }_{\text {ID }}$, account ${ }_{\text {ID }}$, Bank-To, Amount-To, Amount , Type										
20	1	10	1	ST	I	141		1000		UVER
21	1	10	1	QR	I	359		2000		SIPO
22	1	11	1	YZ	1	850		1000		SIPO
23	I	13	1	ST	1	283		1000		NULL
24	1	13		OP		850		2000		SIPO

$\mathbf{T}^{4}=$ DISPOSITION			
dispID	account ID	Type	
40	1	10	OWNER
41	11	DISPONENT	
42	11	OWNER	
43	12	DISPONENT	
44	12	OWNER	

Pattern syntax

- Given a target table T with key K
- Pattern =
selection of attribute values (conj + disj) of T
\& selection of attribute values (conj + disj) for tables with K as foreign key

P_{1} : ACCOUNT(\{ Frequency $\left.=2\right\}$)

[[ORDER(\{ Bank-To=ST, Amount=1000 \}), ORDER(\{ Amount=2000, Type=SIPO \})],
[[LOAN(\{ Date='06/2008', Duration=12 \}), LOAN(\{ Date='09/2008', Payment=B \})]]
P_{2} : ACCOUNT $(\{$ Frequency $=3\})$
[[DISPOSITION(\{ Type = Disponent \}), DISPOSITION(\{ Type = Owner \})]]
frequency $\left(P_{1}\right)=2, \operatorname{count}\left(P_{1}\right)=10, \operatorname{size}\left(P_{1}\right)=9$
frequency $\left(P_{2}\right)=2, \operatorname{count}\left(P_{2}\right)=6, \operatorname{size}\left(P_{2}\right)=3$
Partially Covered Database

$\mathbf{T}^{\mathbf{1}}=$ ACCOUNT		
account $_{\text {ID }}$	Frequency	Date
10	2	$06 / 2007$
11	3	$03 / 2006$
12	3	$08 / 2006$
13	2	$03 / 2006$
14	1	$05 / 2008$
15	3	$03 / 2006$
16	2	$06 / 2007$

$\mathbf{T}^{\mathbf{2}}=$ LOAN						
loan $_{\text {ID }}$	account $_{\text {ID }}$	Date	Amount	Duration	Payment	
30	10	$06 / 2008$	10245	12	A	
31	10	$09 / 2008$	13722	24	B	
32	11	$08 / 2006$	27313	36	B	
33	12	$09 / 2006$	27147	12	B	
34	12	$05 / 2008$	27194	36	D	
36	13	$06 / 2008$	18203	12	C	
35	13	$09 / 2008$	30289	12	B	

T ${ }^{3}=$ ORDER						
				Amount-To	Amount	Type
20	1	10	$1 / \mathrm{ST} / 1$	141	11000 /	UVER
21	1	10	QR	359	1/2000/	SÍPO $/$
22	1	11	1 YZ	850	, 1000	SIPO
23	1	13	YST/	283	$1 / 1000 / 1$	NULL
24	1	13	1 OP	850	12000	SIPO/

$\mathbf{T}^{4}=$ DISPOSITION			
dispID	account ID	Type	
40	10	OWNER	
41	11	DISPONENT	
42	11	OWNER	
43	1	12	

Algorithmic (enumeration) approach

- Run FARMER for every table in DB as target
- FARMER (Nijssen \& Kok, 2003) is an ILP algorithm for enumeration of frequent 'queries'
- Exhaustive search with minsup threshold

Interestingness

- Main contribution of RDB-Krimp
- Find concise set of local patterns that together describe the DB well
\rightarrow Minimum Description Length principle
- Two part code L(H) + L(D|H)

Interestingness

- Greedy approximation algorithm:

1. Initialise pattern set as all singletons
2. Try insert patterns one by one

- Keep if total description length decreases
- No guarantees on optimality

Candidate Set Growth

Code Table Growth

Inductive Logic Programming

(Probabilistic) Inductive Logic Programming

- Field of research
- Also related to / equivalent with probabilistic logic learning, statistical relational learning, logical and relational learning
- Ultra brief review
- We are not experts
- Too much to cover

Data

- Logical representation
- Also an E-R model ?

Pattern syntax

- Generalises all pattern mining syntaxes discussed here
- Can derive predicates (rules)
- Can have no antecedent \rightarrow association but not 'rule'
- Terms can be variables rather than constants
daughter(C, P) :- female(C), mother(P, C)
[De Raedt \& Kersting, 2008]

Algorithmic approach

- Very different terminology
- Logic, but
- Various frameworks (entailment, interpretations, proofs)
- Also based on 'generality' (= monotonicity)
- Search can easily become very costly

Interestingness

- Objective interestingness measures have been employed
- Frequency
- Confidence
- ...

De Raedt (2008)

Case I:Structure Activity Relationship Prediction

Actıve

nitrofurazone

4-nitropenta[cd]pyrene
[Srinivasan et al.AlJ 96]

Structural alert:

Inactive

6-nitro-7,8,9,10-tetrahydrobenzo[a]pyrene

4-nitroindole

Data $=$ Set of Small Graphs

Dehaspe's Warmr ~ Apriori

PARTICIPANT Table

| NAME | JOB | COMPANY | PARTY | R_NUMBER |
| :---: | :---: | :---: | :---: | :---: | :---: |
| adams | researcher | scuf | no | 23 |
| blake | president | jvt | yes | 5 |
| king | manager | ucro | no | 78 |
| miller | manager | jvt | yes | 14 |
| scott | researcher | scuf | yes | 94 |
| turner | researcher | ucro | no | 81 |

COMPANY Table	
COMPANY	TYPE
jvt	commercial
scuf	university
ucro	university

COURSE Table

COURSE	LENGTH	TYPE
cso	2	introductory
erm	3	introductory
so2	4	introductory
srw	3	advanced

SUBSCRIPTION Table	
NAME	COURSE
adams	erm
adams	so2
adams	srw
blake	cso
blake	erm
king	cso
king	erm
king	so2
king	srw
miller	so2
scott	erm
scott	srw
turner	so2
turner	srw

- Knobbe, Arno (2004). Multi-Relational Data Mining. PhD Thesis, Utrecht University.
- Koopman, Arne \& Siebes, Arno (2009). "Characteristic Relational Patterns". In Proc. of KDD 2009, pp 437-446, ACM, New York.
- De Raedt, Luc \& Kersting, Kristian (2008). Probabilistic Inductive Logic Programming, Springer.
- De Raedt, Luc (2007). "Logic, Probability and Learning". Tutorial at ACAI.
- De Raedt, Luc (2008). "Logical and Relational Learning Revisited". Tutorial at ICML.

